

NIST Coordination and Acceleration of Smart Grid Standards

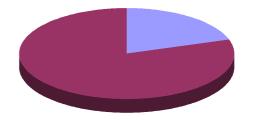
Tom Nelson National Institute of Standards and Technology 8 December, 2010

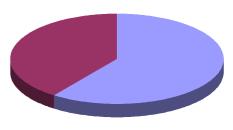
The Electric Grid

One of the largest, most complex infrastructures ever built

"The greatest engineering achievement of the 20th century" - U.S. National Academy of Engineering

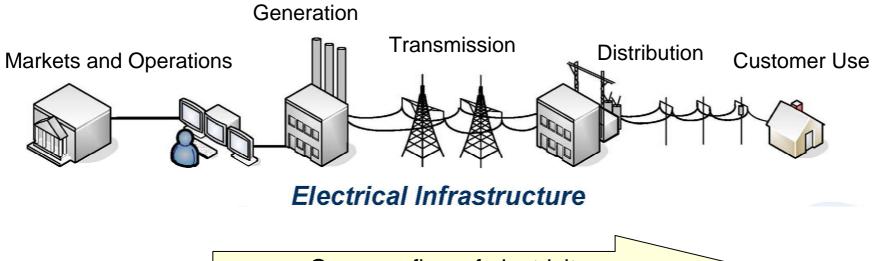
NIST is Providing National and International Leadership to Coordinate and Accelerate Smart Grid Documentary Standards


- Leverages NIST technical expertise, industry connections, independent reputation
- Expanded role for NIST to address U.S. National Priority
- NIST is coordinating standards development, not writing new standards
- Consistent with U.S. Standards System
- Research/Calibration Support for the Smart Grid


Energy use

- Modern life relies on significant energy use
- Energy use has implications (climate, geopolitical, ...)
- Electricity is a key part of solution
 - Infrastructure exists almost everywhere, transportable, reliable, cost effective, ...
 - Electric grid connects supply and demand
 - Electricity must be used or stored when produced
 - Bidirectional communications are needed in future to match variable distributed generation with load
 - Consumers must be engaged to modify energy use
 - New needs and capabilities anticipated
 - Example: Electric vehicles, with storage potential

% of US economy (GDP) dependent on electricity (Manhattan Institute, 2008)


1950 - 20%

2008 - 60%

Today's Electric Grid

One-way flow of electricity

- •Centralized, bulk generation, mainly coal and natural gas
- •Responsible for 40% of human-caused CO₂ production
- •Controllable generation and predictable loads
- •Limited automation and situational awareness
- •Lots of customized proprietary systems
- •Lack of customer-side data to manage and reduce energy use

Smart Grid – A National Priority

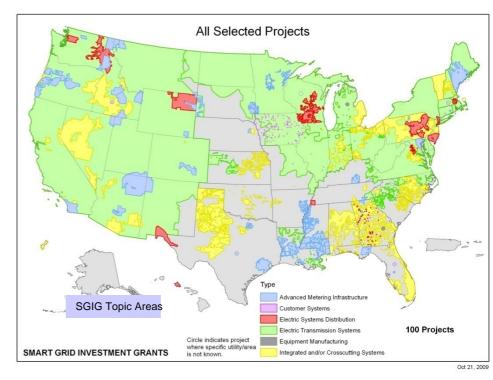
 "We'll fund a better, smarter electricity grid and train workers to build it..."

President Barack Obama

- "To meet the energy challenge and create a 21st century energy economy, we need a 21st century electric grid..." Secretary of Energy Steven Chu
- "A smart electricity grid will revolutionize the way we use energy, but we need standards ..." Secretary of Commerce Gary Locke

Smart Grid Enables:

- Higher Penetration of Renewables
- Smart Charging of Electric Vehicles
- Consumers to Control Energy Bills
- Efficient Grid
 Operations &
 Reduced Losses
- Reduced
 Distribution Outages
- Improved System Reliability & Security

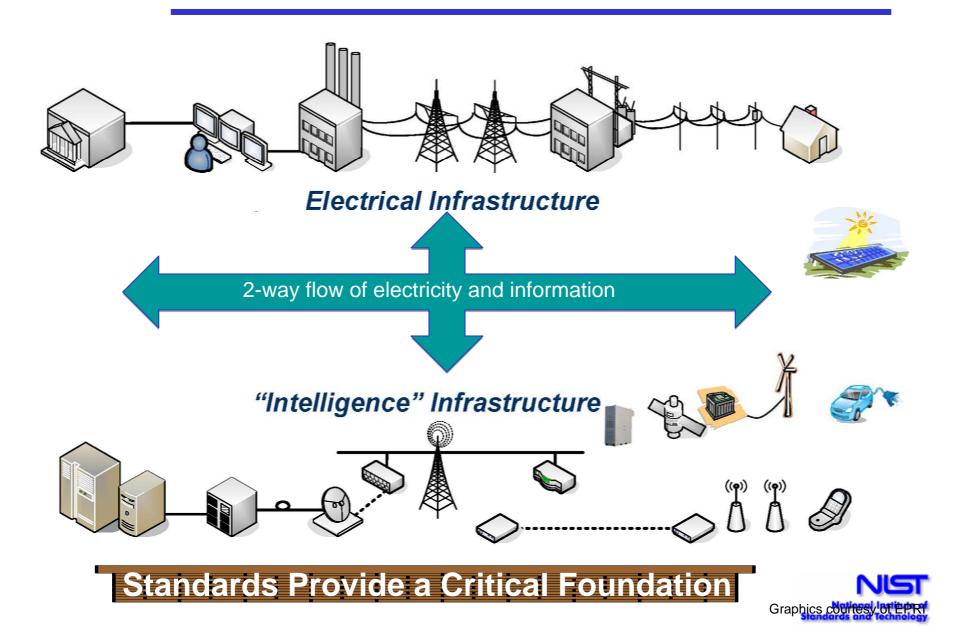

ENERGY US Smart Grid Investment Grants

Category	\$ Million
Integrated/Crosscutting	2,150
AMI	818
Distribution	254
Transmission	148
Customer Systems	32
Manufacturing	26
Total	3,429

18 million smart meters1.2 million in-home display units206,000 smart transformers177,000 load control devices

- 170,000 smart thermostats
- 877 networked phasor measurement units
- 671 automated substations
- 100 PEV charging stations

Geographic Coverage of Selected Projects



What Will the Smart Grid Look Like?

- High use of renewables 20% 35% by 2020
- Distributed generation and microgrids
- Bi-directional metering selling local power into the grid
- Distributed storage
- Smart meters that provide near-real time usage data
- Time of use and dynamic pricing
- Ubiquitous smart appliances communicating with the grid
- Energy management systems in homes as well as commercial and industrial facilities linked to the grid
- Growing use of plug-in electric vehicles
- Networked sensors and automated controls throughout the grid

Smart Grid: The "Energy Internet"

Standards are Essential

Example: Smart Meters

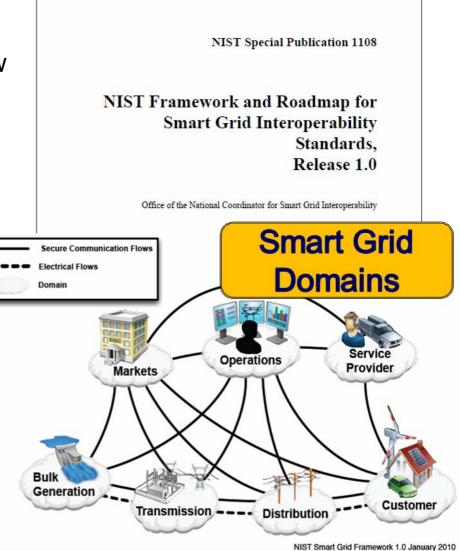
- Key element of smart grids
- 40 million to be deployed in the next several years in US
- Rapid technology evolution
- Absence of firm standards

AMI Metering

- Smart meters that provide near-real time usage data
- Time of use and dynamic pricing
- Ubiquitous smart appliances communicating with the grid
- Energy management systems in homes as well as commercial and industrial facilities linked to the grid
- Growing use of plug-in electric vehicles

Priorities Areas

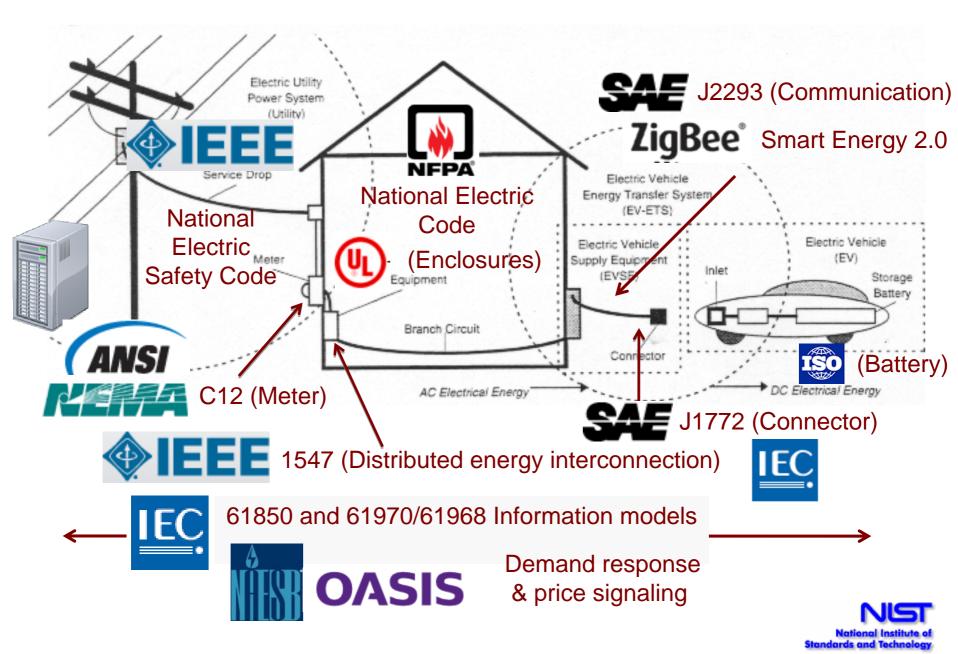
- Demand Response and Consumer Energy Efficiency
- Wide Area Situational Awareness
- Electric Storage
- Electric Transportation
- Advanced Metering Infrastructure
- Distribution Grid Management
- Cyber Security
- Network Communications



Smart Grid Framework and Roadmap 1.0

- Published January 2010
 - Extensive public input and review
 - Completed in Less than 1 year
- Smart Grid Vision & Reference Model
- Identified 75 existing standards
- 16 Priority Action Plan Projects are filling key gaps
- Companion Cyber Security Strategy

http://www.nist.gov/smartgrid/



Standards Come From Many Sources

National Institute of Standards and Technology

Example: Electric Vehicles Require Many Standards

Smart Grid Interoperability Panel

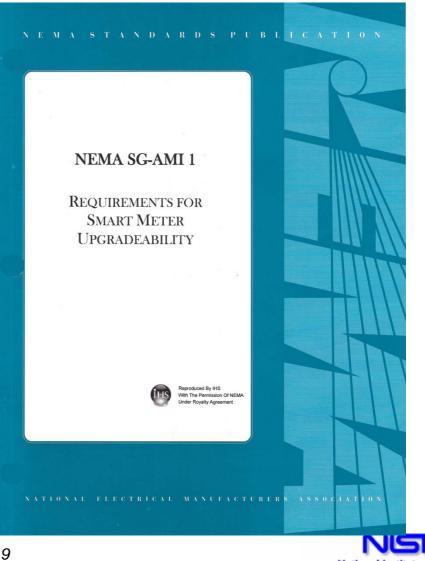
- Public-private partnership created in Nov. 2009
- Broad range of stakeholders in SGIP developing consensus about standards needed to build a smarter grid
 - 620 member organizations (with over 50 international organizations)
 & over 1700 participants from 22 stakeholder categories
- Coordinates the development of standards by Standards Development Organizations (SDOs)
 - Identifies Requirements
 - Prioritizes standards development programs
 - Works with over 20 SDOs including IEC, ISO, ITU, IEEE, ...
- Open, transparent & inclusive process
 - SGIP Twiki: <u>http://collaborate.nist.gov/twiki-</u> sggrid/bin/view/SmartGrid/SGIP

SGIP Standing Committees

- Smart Grid Architecture Committee (SGAC)
 - Creates & refines SG Conceptual Reference Model, including lists of the standards and profiles necessary to implement the Smart Grid.
- Testing & Certification Committee (SGTCC)
 - Creates and maintains the documentation and organizational framework for compliance, interoperability and cyber security testing and certification related to Smart Grid standards
 - Develops & implements certification criteria by which compliance can be verified through testing of vendor products and services

Priority Action Plans (PAPs)

• Created to address gaps in Smart Grid standards


#	Priority Action Plan	#	Priority Action Plan
0	Meter Upgradeability Standard	9	Standard DR and DER Signals
1	Role of IP in the Smart Grid	10	Standard Energy Usage Information
2	Wireless Communication for the Smart Grid	11	Common Object Models for Electric Transportation
3	Common Price Communication Model	12	IEC 61850 Objects/DNP3 Mapping
4	Common Scheduling Mechanism	13	Time Synchronization, IEC 62850 Objects/ IEEE C37.118 Harmonization
5	Standard Meter Data Profiles	14	Transmission and Distribution Power Systems Model Mapping
6	Common Semantic Model for Meter Data tables	15	Harmonize Power Line Carrier Standards for Appliance Communications in the Home
7	Electric Storage Interconnection Guidelines	16	Wind Plant Communications
8	CIM for Distribution Grid Management	17	Customer Facility Smart Grid Information

PAP 00: Smart Meter **Upgradeability Standard**

- NEMA Smart Grid Standard AMI 1-2009, **Requirements for Smart** Meter Upgradeability
- Start of work to approved standard: 90 days!

andards and Tecl

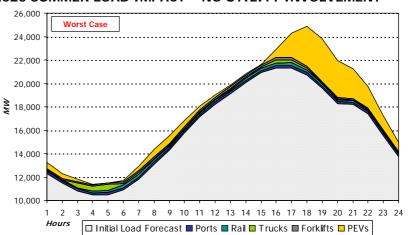
PAP10: Energy Usage Information

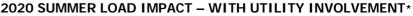
 Data information model for usage (monthly bill to near-realtime
 data from smart

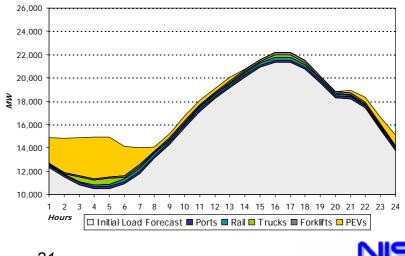
28 127 117

- Timely usage information changes consumer energy choices
- Will enable many innovative products and services

Google Powermeter; also Microsoft Hohm






GIP PAP11: Electric Vehicle Charging

- Data model
 Information exchange protocols
- •Fast charging connector standard

2020 SUMMER LOAD IMPACT - NO UTILITY INVOLVEMENT*

Standards for Appliance-to-Grid Communication

•Price, schedule, demand response signals for applianceto-grid communications

•Home Area Network Communications Protocols

Whirlpool Aims for Smart Appliances in 2011

Smart appliances will need home control systems to store user preferences.

May. 12, 2010 - by Steven Castle

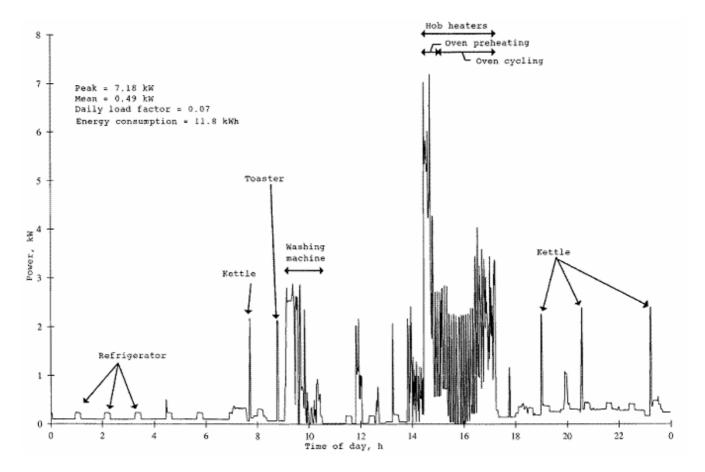
Whirlpool says by 2011 it will have "smart" appliances that can connect to smart meters and the smart grid.

Whirlpool representatives at the Alliance to Save Energy's <u>EE (Energy Efficiency) Global Forum</u> in Washington, D.C. say the company will have its Energy Smart water heater, with an external hookup for connection to a smart meter, available by the end of 2010.

The company also says smart laundry appliances will be available in 2011.

Whirlpool will release smart laundry appliances in 2011.

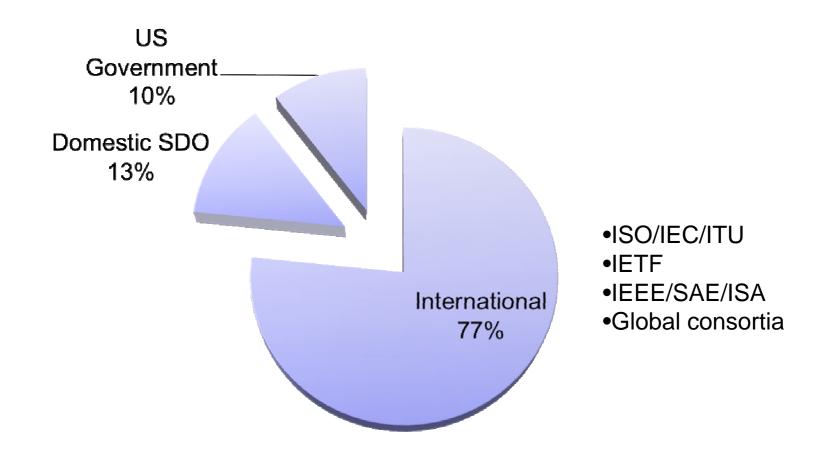
Cyber Security Working Group


- Building cyber security in from the start has been a paramount concern
- Permanent Working Group
 - Over 460 public and private sector participants
- August 2010 NIST publishes: Guidelines for Smart Grid Cyber Security
 - Reflects Comments on Sept 2009 and Feb 2010 Draft Smart Grid Cyber Security Strategy and Requirements
- Guideline includes:
 - Risk assessment guidance for implementers
 - Recommended security requirements
 - Privacy recommendations

Guidelines for Smart Grid Cyber Security: Vol. 1, Smart Grid Cyber Security Strategy, Architecture, and High-Level Requirements	
The Smart Grid Interoperability Panel – Cyber Security Working Group	
August 2010	
Nutional Institute of Standards and Technology • U.S. Department of Communa	

NISTIR 7628

Advanced Metering Interface -AMI



Power Usage to Personal Activity Mapping

Smart Grid Will Use International Standards

Source of Standards in NIST Roadmap

Further Information

- Web portal: http://www.nist.gov/smartgrid/
- Twiki: http://collaborate.nist.gov/twikisggrid/bin/view/SmartGrid/WebHome
- Contact:
 - Tom Nelson
 - Email: thomas.nelson@nist.gov
 - Telephone: +1.301.975.2986